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Abstract
\ -. ~~\ k A .5

The entropy of act i vat i on 4.~ for electron transfer reactions occurring

In concentrated electrolyte solutions is calculat&d, taking into account the

electrostatic and electronic contributior~. By app ly ing the mean spherical and

exponential approx imat ions to treat a simp le model of electrolytes (hard

charged spheres in a dielectric cont i nuum), the pair distribution functi on

is calcu l ated. These approx imations are also used to calculate the elec—

trolyte reorganizat i on term, since both quantit ies contribute to the

~~~~~~~~~~~
electrostatic part of~A~

4
~ Numerica l app l icat ion is made to the ferrous—

ferric exchange reaction in 0.55 M HC~0 . Results of a preliminary electron

tunneling calculat ion for the electron transfe r are hicluded. Reasonable
,e ~~~~

agreement between observed and cal culated ~‘9 is obtained.
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I. Introduction

It is a pleasure to ded icate this article to our esteemed and beloved

colleague, Veniamin Levich, on the occasion of his sixtieth birthday. His

i nvaluable contributions to electrode kinet ics, and his elucidat ion of

quantum effects In electron transfer reactions, are too well-known to all

of us to need documenting here. It is our hope that the next few years wi ll

see him once again able to be active and thriving in this field .

The aims in the present paper are two-fold: (I’) the i nvestigation of

the large negative entropy of act i vation found for electron exchange reac-

tions , such as in Eq. (1 .5) below, even at appreciable electrolyte concen-

trat ions, and (2) the int roduct i on of recent statistical mechanica l methods

for electro lytes into electron transfe r theory , to treat salt effects.

The symbols and some definitions are first recalled : The rate con—

s ta nt of electron transfer reactions is k
r ; the activat i on energy E

a is

defined from the slope of a plot of ~n kr versus the rec i procal of the ab-

solute temperature I as In

Ea = _ k
~~~’~

f l kr/~
(l/T)

~~~ 
(1 .1)

where k is the Boltzmann constant (usuall y in cal/mol e/deg). Eq.
t ‘4 (1.1) permits kr to be wri t ten as

kr = A exp( _ E
a/kT) . (1 . 2)

A can thereby be calculated from the experimentall y measured kr and Ea•
The kr can also be written in absolute rate theory form as1

kr = (kT/h)exp( -AG~/kT) = ( kT/h) exp( -AH~/kT)exp( AS’
~/k) . (1.3)

A comparison of (1.1) to (1.3) then y ields , using the Glbbs-He lmholtz e~ iation,

L -~~ exp(~ S~/k) = A/(kTe/h) . (1 .4)

is the entropy of the transition state minu s that of reactants, each in

some standard state. The val ue of depends On the Units of A (e.g., A can

be in 4./mole/sec Or cm3/mole/sec, say) and thereby the standard state is
I mpl ied in ~ 1’ (e.g., 1 mole/cm3 or I mole/C.).

.—‘-— ‘-‘w—--’-—
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For el ectron exchange reacti ons such as

Fe(H20)6~
2 

+ Fe(H20)6~~ -~~ Fe(H2O)6~~ + Fe(H20)6+2 (1 .5)

the experimental valu es of ~~ are quI~e negat ive~ e.g., -25 cal/mole/

deg, and Ea is 9.9 kcal/mole, when measured at a fairl y large ionic

strength (0.55 N perchloric acid), the excess perchloric acid bei ng needed

to inhibit hydrolysis of the Fe(H20)6~~ ions. The standard state chosen in

was 1 N, by choos ing the units of A to be C/mole/sec. This large

negative AS’1’ is quite cofilnon for electron exchange reactions between small

hydrated ions~ and so our considerat ions are intended to apply to other such

reactions bes ides (1 .5).

There are a number of contributions to AS’1’, Including translational,

electronic (any electronic nonadiabaticity produces a contribution ), and

,
1 . electrostatic in the presence of the added electrolyte. The first of these

Is readily estimated , the second has been roughly estimated in a recent

study ,’ and the third is the main concern of the present paper.

The subject matter of the paper is subdivided as follows : In Section

II the “nonequ llibrium ” distribution of coord i nates in the transition state

is recalle d.5 The various contributions to the free energy of activat ion

Act are given in Secti on III and the electrostatic one is further discussed

In Section IV. In Section V , the “mean spherical”6 and 1!exponentl al hu7

approximations for treating the electrolyte effects are described , aQd

the equations used to calculate the electrolyte effects are summarized.

An outline of their derivation is gi ven in Appendix A . The numerical results

are presented in Section VI and discussed there, together wi th a comparison

wi th a more elementary model.
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II. Distribut ion Function in Transition State

The N-particle distrlbutk~i function p for all coordinates q (transla-

t ions , vi brat ions , and orientations ) of all molecules has been sbowo’ to

be oc the forq~ ~,‘1’, where

= C exp( -Ij~/kT) -‘ (2.))

C is normalization constant and

U’1’(& = Ur + ~~Ur_UP) (2.2)

In the transition state. Here , U”(q) is the potential energy function of the entire

system when the reacting pair consistsof reactants, wh i leU~ is that when that pair

cons i s ts of products; m is a Lagrang ian multi plier , obta i ned from a free

energy balance equat i on. The argument leading to (2.1) Is recall ed: The

trans i t ion state l ies at the i ntersec ti on of the U r and U I
~ potential energy

functions. To find it one minimizes the free energy of formation of this

state subject to this constra intY The Helmholtz free energy of format ion

consists of an energetic term and an entrop ic term, minus that of the

ori gina l reacti ng system

AFt 
~ 

J’p tu’dq + kT J’ p C.n p 1’dq - constant . (2.3)

The equat ions of constra i nt are

V
~ 

‘P~,r~~ ,f ~ 
t~jPcjq (2.4)

and

f p 1’d q = J  . (2 .5)

MinimizIng (2 .3) subject to (2.4) and (2.5) yields

0 — $ (Ur+kT4M pt) ~ptdq (2.4)

-
~



‘ - ,----- - -‘-.-,.—---‘.,--
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

—
~~ ~~~~~~~~~~~~~~ :

--— —
~~~~~~~~~~~~~~~~~~~~ 

I , 

4

$ (u’_uP)b p td~ (2.1)

o= J ’ oo tciq (2.8)

Multi ply ing Eqs. (2.7) and (2.8) by Lagrang ian mul tip liers m and ~kTtji C

and adding them to (2.6) yields (2.1) and (2.2).

The mol ecular parameters appear i ng in  ~r and U1’ include bond propert ies

(force constants, equilibrium bond lengths, anharmonicity constants), ionic

:. charges , di pole moments, and Lenna rd-Jones parameters, Ur and Up differ mainly
a in the ionic charges of the reacting pair and in the bond properties of

that pair. In determining the distribution function p~~, the charges of

the react ing pair behave as though they were e 1t and e21’, where

= e~
r 

+ n
~
e
~
’
~
ei

1’) (I = 1 ,2), (2.9)

e1
1 being the charge on particle I when It is a reactant, and e 1~ being that

a 
when it is a product.

The above derivation used a canon ical ensemble, which is related to

the Helmholtz free energy F. Eqs. (2.2) and (2.9) also app ly when an iso—

baric ensemb le, which Is related to the Gibbs free energy G, is used in-

t stead. sc

~~~~a. . ,—‘ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~



III . Free Energy Changes

We cons ider f i r s t the free ener gy of format ion of the trans i t ion state,

in whi ch the reactants are at some separation distance R. It contains a

translational contribution , 
~
G
~ranS R~ 

an electronic-nonediabaticity con-

tribut ion9 denoted by -kT t.n ~~, a work ~
r both electrostat ic and nonelec-

trostatic , to bring the reactants to a distance R, a configurationa l con—

tribution associated with forming the transition state at a distance R from

the equilibrium system of reactants at the same R, ~GR
t, and a term close

to unity associated with the fact that transition state may have fluctua—

ti0~5
e in R, denoted by -kT at.n P:

= 
~
G
~ rans R + ~

r 
+ 1

~
GR~ 

- kT ~C.n ~~ . (3.1)

arises as follows : The six translat ional degrees of free—trans ,R
dom of the pair of reactants have a partition function ( 2TTm 1kT/ h2 )3/ 2

(2rrma kT/h2 ) 3/2 , where m 1 and m2 are masses of the reactants. These degrees

of freedom become three translat ions of the transition state , with a parti—

tion funct i on (21r[m,+m2]kr/h2)3/2, two rotations associated with a moment

of inertia ~.R
2 [

~ = m 1m2/ (m 1+m2) ] and a partition function &T 2
~aR2 kT/h2,

and one reaction coordinate R. Thereby , one finds

AGtrans g = - kT ~n Z~~kT (3.2)

where Z equa ls

- z = (9’ kT/~~~) 
l/2 R

2 (3.3)

and Is the average collisionfrequencyof t~~ par t i c les , at unit concentration ,

moving in a continuos medium . The reaction rate is now’°
kr = ~~Zexp[_ (w

r 
+ AGRt)/kTJ (3.4)

.
4 

-.

~
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~
r itself can be expressed In terme of the paIr distribution function

a 

g12 (R), defined more full y in Sec. IV; g 12 is uni ty (outside the hard

sphere diameters) when the two particles do not otherwise interact with each

other or with the medium .

wr = - kT aC.n g12 (R) (3.5)

whence

kr = ~TtZg ~
( R) exp( _AGRt/kT) . (3.6)

It has been shown elsewhere that when AGR~ 
depends quadrat i call y on the

“fluctuation” m in Eq. (2.2), it can be written as5b

AGR
t = m2(X o+X1) , (3.7)

where m is the Lagrang ian multiplier in (2.2), ~ is the inne r shell con-

tribution (e.g., due to changes in bond lengths and angles in the reactants)

and X0 is the contribu tion arising from outside theflrst coordination shells.

; A0 includes the solvent and electrolyte reorganization outside those shells.

m is obtained fran a simple free energy balance equation. sa,sb

- AG~~ = AG°’ + ~~~~ (3.8)

where AG~~ is the same as AG~ but starting from the separated products, and

a AG°’ is the “standa rd” free energy of reaction in the prevailing med i um and

at the prevailing temperature.5

It has been shown that the polar ‘!~.iter” cOntribution, m 2X0, can be exp ressed

In terms of the differences of free energy of two equilibrium systems.Sb sd

Namely, denot ing m 2X 0 by AGR O
I’. The latter can be written as

= m2X o = G 1_ 0
0P 

- G1~ 0 . (3.9)

Here , G,..0 is the electrostatic contribut ion to the free energy of a system

whose centra l cha rges are e 1
t_e~~(i 1,2) and wh ich is otherwise similar to

4 4
- I- -.

—1
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the actual system , while G,..o°1’ is the corresponding quant i ty for a system

with central ion cha rges e1
t_e~ but whose orientationa l coordinates of the

solvent and position coordinates of the ion atmosphere do not respond to

any change in charges on the two centra l ions ; only the electronic polariza-

tion of the system responds.

Since the charges e~t on the centra l ions are g i ven by (2.9), the

central ions in system [1—0] in (3.9) have charges -mae on ion 1 and

n~ e in ion 2, where ~e is e ,P_e i
r
, and so is -(e2~-e2

t
~). I.e.,

- 
- 

State [1—0] (-m~e, mAe) , (3.10)

- - the charges be i ng a distance R apart.

To ca lculate the AG~~0 in (3.9) it is necessary to calcu late the elec—

trostatic terms G 1 ...0 ‘~ ‘ and G 1 ..0, for the above two equilibrium systems.

For this purpose , as well as for ca l culating ~
r in (3.5), the various con—

tributions to the electrostatic free energy are listed in the next section.

For the symmetric system (1.5), t reated in the quadratic approx imation ,

. 
m equals — 1/2, a result wh i ch can be derived from (3.7)-(3.8), using

= 0 and ~
r w1

~.

- t
I.

4

kI~ 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :..- 
-



V - ‘

8

IV. Electrostatic Contribut ion to the Free Energies in Eq. (3.9)

As just noted , one needs the free energy of equ ilibrium systems.

Consider a system where the charges on the two central ions are

e 1 and e2, a distance R a p a r t , the charges of the 1:1 eiect rolyte are

e3 = -a4 = e,and the medium has a dielectric constant D. There are two

contributions to the electrostatic free energy G.

G = G
SOIV 

+ Gatm , (4.1)

where ~~~~ is the solvent contribut ion, outside of the inner shell , defined

as the contribution in the absence of the added electrolyte. ( The

i nner shell contribution to Gs01v is contained in m2X
~ 

in (3.7) and not in

the m2X 0 of (3 .9) and 50 is not included in (4 .1).)

In a simp le electrostatic model , G 50I
~ is the Born charg ing term plus

the work e , e 2/DR required to bring the Ions together.’’

G~
°1

~’ =~~~~ — (I -
~~~~ ~~~~~~~~~~~~~~~ 

_

~~~~~~ 

+~~—~~~ - 
, (4.2) - 

-

where a 1 and a 2 are the radii of the solvated ions.

One can see immediately how Eq. (4 .2) can be used in (3.9). One

replaces e , and a2 by the charges in system (1-0] , namely the —mAe and mAe

of Eq. (3.9), then replaces D by 0cip• One subtracts from this result the

- t correspond i ng quantity with D repl aced by D5. Thereby, the solvent con-

tribution to ~Gt isR,o

~~~ olv 
= m2~e2(~.!— + .L - - ‘ (4.3)

a well—known result . 5 , 1 2

atm atmWe turn next to the G in Eq. (4.1). G can be written as the electro —

static free energy of Interact ion of ions l and 2with their ion atmospheres when

~~~ - ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~
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I and 2 are far apart , plus the change in this ion-atmosphere electrostatic

free energy when the Ions 1 and 2, surrounded by their atmos pheres, are

brought from an infinite separation distance to a distance R apart. We

denote these two contributions by Gatm(co) and ~~
atm

(R)

Gatm = Gatm(~) + AGatm(R) . (4 .4)

Both terms in Gatm should reduce to zero at zero ionic strength by defini—

tion , and so the work term e ,e2/DR of (4.2) is not included in Gatm.

To calculate Gatm it is convenient to define ’3’ 14 a pair distribution

functi on 9 i~
(r) for particles i and j: If is the average number of

particles of type j per unit vol ume then ~1~(r) is defined by the statement

that the average ri.imber of particles of species j in a volume element 4TTr2dr at a

distance r and r+dr from a particle of spec i es i is P~9~J
(r)4rrrzdr . ~1~(r)

- • 
has the property that ’5

g ij( r) -~~ i as r .-. . (4 . ~
,)

Cons i der a charg ing process of the centra l ions , where the charge of ions I

and 2 is Xe , and Xe 2 and X goes from 0 to 1 . The charges In the ion atmo-

sphere are e3 and e4. The g,j when 1 and 2 are infinitel y far apart is

denoted by g,j (r;Xe ,) at stage X of the charg ing process ( j  = 3,4). The

potential act i ng On ion 1 at its center , due to the ion atmosphere is ,

t~ -
~~

= $f (p3 e3g ,3 ( r ;X e ,) + p4 e4 g ,4  ( r ;X e ,) ]/Dr)41Tr 2 dr . (4 .6)

Multi ply ing by the charge increment d( Xe ,), integrat ing over X , and add ing

the corresponding term for ion 2, one has Ga 
(a):

- 1
Gatm(~) = ,f(~p 1~’e , 4. ~2~’e2)dX . (4.7)

1:~L x=o

I L  ~
—-

~~~~~ . ~~~~~~~~~~~~~~~~~~~~ 
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Finafly, the term ~G
atm(R) in (4.4) can be expressed In terms of ap-

propriate differences of electrostatic work terms to bring particles I and

2 together in the medium : The electrostatic contribution of the atmosphere

can be defined as the total work to bring particles I and 2 together when

t hey have charges e 1 and a2 minus this work when the atmosphere is uncharged,

i.e., minus —kT Cn g,2 0(R) + e ,e2/DR. Using (3 .5) one has

AG
atm(R) - kT ~n[g ,2 (R)/ g ,2 0( R)] - (e ,e2/DR) . (4 .8)

At zero ionic strength this AGatm(R) vanishes.

— Since the ion atmosphere in the [ l—O ,op] system in (3.9) does not res—

pond to the charges on the cent ra l ion, the atmosphere contribution to the

G,..o°1’ in ( 3.9) is zero, and so the atmosphere contribution to L~GR O
t is

—G ,.-0 , and is the sum of (4.7) and (4.8), with e 1 and e2 rep laced by —mAe

and mAe, respective l y.

It remains to calculate the 
~~~~~~~~~ 

in (3 .6), (4 .6) and ( 4.8), and for

this purpose the mean sp herical and exponential approximat ions are described

in the next section.

Before g iving these equat i ons, it is usefu l to just consider a more

elementary model , based on Debye-Hti’ckel theory. The solution of the linear-
- p

ized Poisson—Boltzmann equati on for the total electrostatic potential at a

point r outside of a central ion 1 , ~1(r), is ’6

~,( r) = (e ,/Dr) exp [ — t ( r—R) ] 1(1 -I~tR) (r ~ R) (DH) , (4 .9)

‘I

1-  when R Is the distance of closest approach of the atmosphere to the central

ion. DH denotes Debye—H’u’cke l. The electrostatic work required to bring an

Ion 2 of charge e2 to a distance R, W ,2(R) , is e 2~i ,(R) , i.e., 

~~~~~~~~~~~~~~~~~
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W ,2( R) = (e 1e2/DR)/( l+tR) ( DH) • (4.10)

The value for the pair distribution funct ion g,2 (R) is , in the Debye—HUckel

approximat ion,

g,2 (R) = 1 — ~W ,2(R) , (4.11)

where ~ 1/kT. If one used the exact W ,2(R), its relation w ith g,2(R)
would be

g,2 (R) = exp(—~W ,2(R)) (4.12)

If one were to use (4.10) and (4.11) one would encounter a serious error--

even a negat ive g ,2 (R) . If , on the other hand, one were to use (4 .10) and

(4 .12), i .e., an “exponential” form of the Debye-H’u’ckel , the error in 9 12

is found to be less . ~ In treatments of kinetic salt effects by Debye-

HLickel theory, one in fact forgets about the linearization (4.11) used there

in the derivation, by using (4 .12) and focusing attention on the calcula-

tion of a free energy term a nd inc l ud i ng it in the free energy of act i-

vation, i .e., including it in an exponential in the rate constant expression.

An uncertainty arises in the Debye-H’dckel picture when the diameter
of the princi pal ions in the atmosphere d iffer s from that of central ion
2. In the interest of simp l ic i ty this difference in d iameters wi l l  be
neg l ected in Eqs. (4—l3)— (4.ll), just as It was In (4 .10).

I
- 

In comput i ng the .~.n g12 /g 12
0 term in (4 .8), where now 9,2 0 is unity,

-
: •..

~ one obtains

-
~~~ ~ -kT ~n g,2 (R)/g,2

0(R) = W ,2(R) =(e,e2/DR)/(l+~R) (DH), (4.13)

regard l ess of whether one uses (4 .11) and then expands the logarithm , thus

“undoing” that approximation , or uses (4.12) direct ly.

The Gatm(~ ) term g iven by (4.7) and (4.6) is also estimated : The g,~

appear ing In (4 .7) Is g iven by

1

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __l
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a g,5 I — ~e34~,(r) = I — e3~Xe,(expf—k(r—R)]3/(I+kR)Dr . (4.14)

Not i ng that g,,~ is g iven by a similar express ion wi th e3 replaced by e4,

i.e~, by —e, Eqs. (4.6)—(4.7) y ield

Gatm(~) = — (e,2+e22)x/20(I-i,tR) . (4.15)

Finally, one obtains from (4.4), (4.8), (4.13) and (4.15), that

Gatm = - ,c[~<e ,2+e22)÷e,e2]/D(!.~ R) (DII) . (4 . 16)

The reorganization term is obtained by replac i ng e , by -mAe and e2 by

mAe, whence

AG~~0
atm = 0 ( DH) . (4.17)

Other Debye—HUckel methods5b g ive slight ly different results than (4.15)-

(4.16), e.g., from solution of the linearized Poisson—Bol tzmann equation

when ions I and 2 are fixed a distance R apart. Gatm is then defined as

the electrostatic work to charge these two ions minus that when their ion

~ i 
atmosphere is absent.

*

a.

- 4

p 
::~ 

.
~
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V. Mean Spherical and Exponentia l Approxi mat ions

A. Descript ion of Approximations

The mean spherica l approximat ion (MSA)6 emp loys the l i n ear izat ion pre-

sent In Debye-HUcke l theory and introduces hard sphere radii , but is sta-

tistica l mechanica l in nature. W h e r e a s  the Debye—Hikkel theory

does not allow for hard sphere repulsion between the ions belonging to the

ion atmosphere, the MSA does. The MSA yields good ~ reement”wIth activity co—

eff icients , calculated numerical ly (Monte Carlo) , in the concentration

range 0.1 to! H. It does not g ive accurate results for the radial distr i—

• bution functions on contact?6’’8 For thi s purpose, the ‘1exponentialapprox ima-

t ion” (EA)? which makes use of the MSA result but attempts to correct for

the linearizat ion, is nuch better, as judged by compar i son wi th exact stat is-

tical mechanica l numerica l (Monte Carlo) computations. ~c

To cal culate, thereby, the g,z(R) at contact in (3.6) and (4.8) the EA

is used below, while to cal culate (4 6)-(4.7) the NSA is used. (For

• act ivity coefficients its results are comparable with EA.)

These approximat ions are described next.

Firs t, recalling the definition of 9i~
(r) in the previous sect ion one

notes that when there is no interact i on between the particles then for all

i and j

= 1 (al l  r) . (5.1)

Thereby, h1~ (r) defined as

h1j(r) = 

~ij~
’)  — 1 (5 .2)

reflects the i nterparticle interact i ons and, in v i rtue of (4.5), approaches

zero for large interpartic le separations.

‘p

- 4~ 4
—

4 —
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a 
I It is very convenient to define a new functlon~’3~ 1~(r)~ related to

hij(r). but that expresses correlat i ons between I and j more direct ly

than does 9iJ’ by bei ng more related to the intermolecular potential it-

self. For that one decomposes h(r), for a one component f l u d, i nto a

chain of integrals of this new funct Ion C(r). That Is if C(r ,2) correlates

d i rectly the small volume elements from positions I, 2,wfere r ,2 denotes ILI LzI,
then h (r 12) is constructed from the sum of the direct correlation C(r ,2)

plus the direct correlation of a particle at r1 wi th the par t ic les p dr3

in £ 3, multi plied by the direct correlat i on of those at r3 with those in £ 2,

integrated over all £ 3, plus the direct correlation of the particles at r ,

with those at £ 3,  mu lti plied by that of those at £ 3 with those at £4~ and

then by those of r4 with those of r2, integrated over all £~ and r~, and

so on.

r 2) = c( r 2) + SC( r ~ 
pc( r3 2) di?3 + J’c( r , ~) pC( r34) 

pC( r4 2) d~3d~4 +

• (5.3)

• 
-

- 

- 

or using the symbol * for a convol ution integral:

h( r) = c( r) + C*PC + C*PC*PC + ... (5.4)

This definition of C( r) can be seen to be completely equivalent to

h( r) = C( r) + h( r) *pC( r) . (5.5)

wh i ch gives (5.4) upon successive iterations . Eq. (5.5) is the cele—

brated Ornstein-Zernike equation .’9
‘

The generalizat i on for mixtures Is given as

h;j(r1~) = C 1~
(r
~~) 

+ E ~~~~~~~~~~~~~~~~~~~~~~~~ . (5.6)

In matrix form one has

:~~-~ 
h. = C + * ~~~~, (5.7)

- 4- .

———u
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where P is a diagonal matrix.

When each molecule is treated as hav i ng a hard spherical core, the

van i shes when r . .  is less than the mean diameter , (d
~
+d.)/2.

Hence

h1j(r 1j ) = — I , r 1~ < d1,~ a ~ (d 1÷d~) . (5. 8)

If one had a system consisti ng of a mixture of uncharged hard spheres, the

i nteraction between mol ecules is zero outside the distances of closest

approach. Making the approximation that
C~~(r ) = 0 for r -

~ ~~ 
(hard spheres) (5.9)

and using condition (5.8) one obtains the well—known Percus—Yevick ( PY) ap-

proximation,2° which is an excellent descri ption for the fluid regJon of hard

sphere systems. This fluid serves as a reference system for realistic dense

f luids and for electrolytes .2’
To solve the set of equations (5. 7) for electrolytes some

knowledge of C
~~

(r
~~

) is needed for those systems, just as it was in the

PY case , a knowledge hidden in the higher-order distribut ion funct i ons. We

a proceed to mot ivate and g ive the choice made in the case of the mean spheri-

cal approximation s

In the limit 2 2  of ~ — ‘ 0 , Eq. (5.4) shows that C approaches h. But Ii

approaches the simp le Boltzmann va lue when 
~ -‘ 

0:

t.im C~.(r~.) = h..(r..) = exP(_
~
V i~) 

— 1 , (5.10)

where ~ denotes I/kT and V.. is the interaction potential of i with j.

For suff i c i ent ly  low ~~~ expans ion of the exponential y ields 23

C
~j
(ri.) = - 

~~~~~~~ 
. (5.11)

The mean spherica l approx imation, introduced by Lebcwitz and Percus,

consists of assuming Eq. (5.11) for r>d 1j. fo ran y dens i typ, then solvlng (5.6)

subject to (5.8). The solut ion reduces to the linearized Debye—HUcke l

~~~~~~~~~~~~~~~~~~~~~~~~~
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result when d1~ s made to approach zero, and to the hard sphere PY equa—
tion when the charges e1 are made to vanish. oa

The exponential approx imation of Chandler and Anderser? attempt s to

undo the linearization embodied in (5.11) Its distribution funct ion

g1j~~ is obtained to be the hard sphere pair distribution funct ion 9 jj °

multiplied by a suitable exponential,2’

~~~~ 
r
~~
) = g.. °( r..)exp( _

~
w
u) . (5.12)

By an optimization procedure they obtained an effective potential
which in our case is well approx imated by the mean spherical approximation
to g

~~ 
and ~~ g~~°:

~~~ ~ ~~~~ — . (5. 13)

(In Eqs. (4.10) and (4.1 2) of Sec . IV, Eq. (5.12)—(5.13) were also used

for i-e l, j=2 , at r ,2 =R , but wi th 9 12
MSA replaced by the Debye-H~,’cke l

value (4.11) for 9 1 2,  and with 9~~2 replaced by unity. )

Some qualitative insight into(5. l2)—(5 .l3) isobta ined as follows :

• 9i~
(r) is related, via an exponential , to the work requ ired to bring I

and j to a separation distance r from~~. Eq. (5.12) presumes that this
- 

- 
work is the sum of the hard sphere work plus an additiona l ionic work.

Remembering that g~j
M~\ is a linearized g 1~ , one would write for it , in

the same sp irit as (5.12 ),

91J
MSA 

~~ ~ij
0 — 

~~~~~ 
= 

~ij 
— (5. 14)

where we have set g 1, °equal to unity in the second emall term on the rl~it hand si~ .J

However , (5.14) is seen to be none ot her than (5.13). Eqs. (5. 12) and

(5. 13) prov ide the “exponent ial approximati on” and y iel d an Improved

value for the value of at r ;j = d1~ . That is , to use th is ‘ exponent ial
• approximatior~’it suffices to solve the problem In the “mean spherical appraxi—

¼ 
mat lon.”

-.
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B. Equations for the g11
1 s

The g ,20(R) for the herd spheres (Py) system, in the presence of an

uncharged atmosphere of particles 3and 4,occursin(4.8) and is gi ven by 25

g I 2 O( R) = (1 —~
) — ‘ + (3R/2L) 

~~ 
..g) — 2 

, (5. 15)

where ~ is the ratio of the tota l hard sphere volume of the atmospheric

Ions 4TT( L/2)3 P4/3 to the total volume V :

= np13 16 , P = P3 + P4 . (5.16)

The W ,2 present in Eq. (5.12) and (5. 13) at r 12 = R, Is shown by

Eq. (A.28) and (A.30) of Appendix A to be given by

W ,2(R) = (e ,e2/DR )(l+p) 2/q 2 , (5.17)

where

p = (l+2 ,(L)hl’2 , q = 1 + p+  ~tR, ,~ (4rTpe 2/DkT)h/’2 , (5.18)

a 
~t being the i nverse Debye length. Clearly (5.17) tends to e,e2/DR when

the atmospheric numbe r density p tends to zero. The g,2(R) in Eq. (3.6)

is now given by (5.J2), using (5.15) and (5.17).

In Eqs. (4 . 6) a quant I ty such as g , ~( r) —g ,,
~
( r) appears when e3 =

—e4 = e. According to two of the equations in (A.6), and the relation

between and hi~ 
in (5.2), this g,3—g,4 is given by the following , where

the charges on the centra l ions are expl icitly indicated as >,e1 and ~e2,

:~ g,3(r; Xe ,) — g ,4 (r ;~ e ,) = 2h ,(r;Xe ,) (5.19)

and similarl y

g23(r;Xe2) — 324(r;X.2) = 2)as2h~(r;Xe ,)/)e, . (5 . 20)
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•

(The latter could also have been written as 2h,(r;X.2), since h, is a

• lInear function of the charge of the centra l ions.) Further, the integra l

of h , ove r r, mul t i p lie d by various cons tants , is the same as the integrais

of the g13 -914 and 923~~92 4  that appear in Eqs. (4.6)—(4.7), and is g iven by

Eq. (A 19). In this way one obtains from (4.7)

= —(e1 2+e22)x/Dq , (5.21)

a resul t which may be compared with (4.15) .

On the other hand the AG
atm

(R) In (4.8) is obtained from the contact

g,2 values. By us i ng (4.8), (A.28), and (A.29), one f i nds

AGatI
~~R) = (e ,e2/DR)[( l+p)2-q2]/q2 . (5.22)

Thus, from ( 4.4), (5.21) and (5. 22) one has 
-

Gatm =[-( e ,2+e2 2)( ,4~/q) + e ,e2[( l+p) 2 -q2]/q 2)/DR . (5.23)

-To obtaIn the atmospheric contribution to AGR ~ one uses (3.9) and

(5.23), but replac i ng the e 1 and e2 in the latter by —mAe and mAe, and

the D by D~• This gives the amosphere contribut ion to G ,.0. There is

no atmosphere contribution to G~~0, since by definition the Ion atmos—

phere and orlentational coordi nates do not rearrange In the (l-O,opj system;

only the electronic polarization responds to changes in charges on the

two central ions. Thereby, the atmospheric contribution equal s

j ~ ~~*atm,1 .G~
tI
~ = m2(Ae) 2(,~R)2/q 2 D5R . (5. 24)

In summary, is obtained by adding (5. 24) to (4.3), and the

1-
~ 

g, 2( R) in (3.6) is given by (5.12), (5.15) and (5.17), while Debye-HUcke l values

are given by (4 .13) and (4 .12) . The former equations are just as easy to
- 

I 
apply as the latter.

•
•L

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I Fina ll y, the ~
r appearing in Eq. (3.5) is related to W 12(R) and g,20(R)

- 
via (5.12).

= W ,2( R) — kT C.n g,20(R) . (5.25)

- The expressions obtained from these equat ions for various contribu-

t ions to ~~~ US Ifl9 -~~G~/~T, are as follows:

The translationa l contribution is obtaIned by differen t iat ing Eq.
(3.2), us ing (3.3), and is g iven by

t
~
S
~rans R = k aCn(Zh/ kT) — (k/2) . (5.26)

-I The electronic contribution is

-~ = k ~n 
~~ (5.27)

-i neg lect ing any temperature dependence of ~~.

The ent rop ic work term, .aW r/aT, obtained by differentiat ing (5. 25)

• and (5 .77) is

- = k tn 9I2~ — (e ,ez/D3TR)[(l +p)/q2]~ e(l+p)_[,(R(e_ 1)(l+p.,%L)/pq] ) , (5. 28)

I where e denotes -ô ~tn D / ô  ~tn T.

• The corresponding term at zero ionic strength Is obtained by setting

; 
: 

p = q/2 = 1. The correspond ing Debye-H’dckel term, obtained by different-

Iating (4 .10), is

~
S
wr~

(DH) = —(e ,e2/D TR)(28+exR.stR)/2( l-+stR) 2 
. (5 .29)

The solvent reorganiza ti on term, obtained by different iating (4.3), Is

~5~~0
solv 

= m2~~ei
2e/D5TR (5.30)

neg lecting the tempera ture dependence of D~ ,.

a. - b

-I.- -
~~~ ;

j 1~~~~.L 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The ion at mosphere reorganization term, obtained by differentiat ing
- . (5.24), is
- 

~ 5~~0
atm 

= -m2(~ e) 2 (( xR) 2/q 3D5TRJ fqe.i.( e-1)[I÷p..( ,cL/p)]) . (5. 37)

• The ion atmosphere reorganization term In the Debye—HUc kel approxima-

t ion, obtained from (4.17), i s zero.

For the electron exchange reaction (1 .5), the va lue of m is, as al-

ready noted, -7/2.

‘I ~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~



VI. Numerical Calculations and Discussion

Using the ionic diameters 26 g iven in Table I the various contribu-

t ions to AS1’ are cal culated from the AG1’ contributions using

They are sumarized in Table I. The agreement w ith the net experimental

va lue at 0.55 N HC1.04 is seen to be quite reasonable, based however on the

rough est imate for the nonadiabaticity factor ~ in ref . 4. There is seen

to be a substantial contribut ion of the Ion atmosphere to A S1’, as expected

from the extens i ve atmosphere shielding i nvolved. The various soivent and

atmosphere terms are further classified into “work” type (W ’ type) and re-

organizat ion type (~ G~~0 type) contributions . The g 12 0(R) appearing in

Eq. (5. 15) Is 1.08 at 0.55 M HCataO4 .

It is interest i ng to compare the effect of the ion atmosphere on AG1’

and A S1’, ca lculated in Table I, with that ca lculated from the Debye—HUckel . -

theory. The resu l ts are g iven in Table I and are seen to be strlkhigly

close to the mean spherica l results ( in the exponential approx imation for

• both). Nevertheless, the NSA is readil y generalized to more compl ex sys-

tems, whereas the DII is not.

In the present treatment, the centra l Ions were taken to be of the same

size (diameter R), as were the ions in the atmosphere (diameter L). One

• can readily genera l ize to arbitrary sizes of each of these ions , us ing the

- exponent iai approx imation, wi th the form of the mean spherical approximation

results obtained by Blum and Høye.27b

A second generalization is in ca lculat ing the fluctuations in separa-

tion dis tance R in the transition state, Instead of largel y restricting It

to the “hard sphere contact distance.” One would maximize with respect to

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
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r, ~(r)z( r)g 12(r)exp( —~AG~~0), r being the separation distance (replacin g

R). g 12( r) is given approximately 2hl3 by

g 12( r) ~ g 12 °( r) exp( H ,2 (R) ( R/r) exp[-2I~( r-R))) , (6.1)

where H 12 (R) is g iven by Eq. (A. 29) of Appendix A and where 21’ is p—i .

Eq. ( 6.1 ) appl ies to equal size centra l ions and a symmetric atmosphere,

but can be general ized.27b

The present equations become less accurate, as judged by comparison

of the exponential approximat ion with Monte Carlo results, in the range

around 0.01 M for very highl y charged si gns. IS The phenomenon usua ll y

termed “ion—pairing ” occurs there, aid at lower densities , and one needs a

more sophisticated approx i mat ion, such as perhaps the hypernetted-chain

one.1
~~

• It should be emphasized of course that the model employed here for

salt effects is the primitive one, containing as it does only hard spheres ,

withou t specific ionic interactions and not allowing for solvent structure

• breaking and forming effects. Some discussion of deviations from the d i—

electric cont inuum approx imat ion is g iven in Ref. 18g.

In summary, the use of the Debye-HUcke l t reatment to ca lculate the

electrostatic free energy tacitl y makes use of the “exponential approxima—

tion” but with a Debye—HUcke l g,2 replacing a mean spher ical one. The

mean spherica l equations for symmetrical systems are not more d iff icul t to

~
,. ‘ use than the Debye-Htl ckel ones. They treat the hard sphere excluded volumes

in a more self—consistent manner , and can be generalized to less symmetri—

cal systems. The cal cu l ated result for the entropy of act i vation in Table

I agrees well with the experimental one, but the electronic-nonadiabatic

• contribution’ should be regarded as a prelimin ary one.

~~ ~~~~~~~~~~~~
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Appendix A. Mean Spherical Approximat i on. Physical and

Mathemati cal Ideas.

A si mple model of electro lytes of N spec ies w i l l  be used, character—

ized by the number density of Ions ion charge C i, hard core diameter

d 1 and dielectric constant D. There is also the added condition of over-

all electrica l neutrality, i~e., 
. -

N
E p kek = O  (A. !)

k=l

The N.S.A. consists of Ornstein-Zernike equat ion ’9 plus the Lebowitz—

Percus assumpt ion6b about the behavior of C
~~
(r)

~ 
namely Eqs. (5.7), (5.8),

(s. fl), and Eq. (A .1), wi th V~~ be ing

V. .  = e.e./Dr.. , r. • -
~ d.. . (A .2)

‘J I i  Ii Ii Ii

One can, incidentall y, show direct ly from these equat ions that the M.S. A.

satisfies the still inge r—L .ovett 2 8
’
29 moment relat ions, a result which fol—

lows from an observation of Groeneveld ,3° and which has the implication of pre—

dicting oscil lations in the charge dens ity around a g i ven ion at hi gh Ionic

strengths.

The solution of the equat ions (5. 7), (5.8), (5 .11), (A.l), and (A .2)

was first obtained by Waisman and Lebowitz and can be found in references

6c, 6d and óe. The tec h  n i q u e s e mp 1 0 ye d extended W ertheim’s
I. -~

method3 ’ for solving the PY equation for pure hard spheres, later used by Lebowitz2 5

for the PY mixture of uncharged hard s pheres. For the case of symmetr ic

electrolytes, the prob lem was solved completel y, wh i le for the asymmetric

case, the solut ion led to a set of coupled algebraic equatIons. Blum,27

utilizi ng Baxter’s32 applic ation to fluids of the Wiener-Hopf integral

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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equation solving technique, was able to reduce the prob lem to solving a

sing le algebraic equation of hi gher order , an equation which reduces to a

quadrat ic one in the case of the present problem of a symmetric electro-

lyte surround i ng the two central equal —size ions. For this simpler prob—

1cm we shall use instead a method of solving the equations which avoids

the compl Icat ions of the previous methods and uses the known solution for

symetr i c electrol ytes found In Ref. 6d.

In the present case the Ionic atmosphere consists of a symmetric elec-

trolyte, composed of ions labelled (3,4), w ith

e3 = -e4 = e , d3 = d4 = L < R , p
~ 

= p4 = p/2 (A .3)

and with the centra l ions labelled (1 ,2) with charges e 1 and e2, and

d 1 = d 2 = R  , p , =p 2 = o  . (A. 4)

Because of this synmet ry it readil y fol lows from the Ornstein— Zernlke

equat ions, plus the associated conditions , that the matrices t~ 
and ~ are

symmetric and that for the symmetrica l 1: 1 electrol yte one also has

h33 = h4 4  , C 33 = C44 . (A .5)

These quantities are the same as those in the absence of ions 1 and 2,

since Pi = P2 = 0. They can be taken as know n, since the solution to the

problem of a 1:1 symmetrIc elect rol yte by itself Is available ,33 and Is used

later via the functions ~ and h in (A .ll), etc. One next defines

h = (h33-h 34 )/2 , = (h 33 +h34 )/2 , C = (C 33-C34)/2 , = (c 33~~34) /2

- • 
‘1

It can be seen that by addi ng and subtract i ng the Ornsteln—Zernike

~~ 
- equations for the indices 13, 14, 23, 24, using (5.11), (A. 5) and the sym—

metric nature of the matrices h and C, one obtains ,

• 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _—~~~~~~~~~~~~~~~ _ •r
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h ,5 = 1u, + h 1 , h23 = Ii , + (e2h ,/e,)

(A.6)
= 

~, — h , , h24 = ii, — (e2h ,/e,) ,

and an ident ica l set of equations with the h’ s replaced by C’ s. Here,

the funct i ons ii,, ~, and h ,, C 1 satisfy the following decoupled linear

i ntegral equations:

= C, + P h 1*C

(A .7)
h , = 0 , r < R , ; C , = —~ee,/Dr , r > R 1

and

(A .8)

~;, = - J  , r < R , ; ~ i = O , r > R ,

where

R , f( L+R ) . (A .9)

Equation (A .8) contains no ionic charges and actuall y is the same

as the PY approximation for a binary mixture of uncharged hard spheres

of two spec ies , one of diameter L at a density p and one of diameter R

at a vanishing dens ity ; ~~~ represents the unlike particles total pair

correlation. Its solution is obtained as the limit of the Lebowitz

genera l solution25 of the PY approx imation for mixtures , by letting one

of t he p ’s van ish, but is not needed here, and so s not c ited.

It remai ns to solve Eq. (A.7). Auxiliary functions o ,(r) and o(r)

are first def ined :

(-C , -~~ee ,/Dr r < R ,
a ,(r )/2npr = (A. io)

(• 
h ,(r) r > R ,
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- (_C _
~~e2/Dr r < L

c~(r )/2rTPr = . (A. ll)
h( r) r,. L

(Auxi liary funct ions have been int roduced to solve other Integral equations,

and were used for the first tine by Wertheim3’ to solve the PY equation.

The add ition of the Coulombic term was one of the key steps introduced by

Wa isman and LCb0WItZ oc
~~ to solve the mean sp herica l Integral equations

for electrolytes. ) Us ing bi polar coord inates Eq. (A .7) can then be written

as:

2 L r+y
a,( r) = - - J’ ~ ,(y)e( L-I r-yf )  f a(x) dx - 

~
— f cy,(y) dy ,f dx , (A . 12)

R , I r—y I R , ~r—y I

where

8(z ) = 1 i f  z 0 , 8 = 0 otherwise . (A .l3)

• One now takes the Laplace transform of (A. 12), obtaining

G ,( s) = — [(,t 2 se ,/2e ) — s 2 F ,(s) — x 2V ,] / [s 2 —,t 2 —s F2(s )] , (A. 14)

where
R ,

G 1(s ) = 
~ 

a,( r) e 51 dr ; F p(s) = 
~~~ 
O,(.r)e~~

rdr , (A .15)
R,

L
F2(s ) = F(s) —F ( —s) with F( s) = 

~~~ 
o(r)e

_sr
dr , (A .16)

and

V , = G ,(O) = J’ cy,( r)dr . (A. 17) •

Eq. (A. l3) , which contains two unknowns F ,(s ) and G ,(s), Is a solvable

funct ional equation .3’ By impos ing the appropriate ana lyt ic propert ies35

of G ,(s) and F ,(s), both of these funct ions can be obtained. The deta ils

are found in the literature ~~~~ By now performing the Inverse Laplace

_ _ _ _ _ _ _ _ _ _
_  

-
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transformat ion, one obtains a,(r) and, thereby from (A.lO), tM following
• exp licit result for C ,( r) :

(2~e2 V i/D , r < ii~k E x
C,( r) = c ~ (2~e2 v ,/D)[l+[v(r—X) 2/2r1] , X < r < R 1 (A.18)

(_
~e ,e/Dr , r , R ,

where the quantities V and V 1 are assoc iated with the mean potent ial energy

of the Coulomb potential and are given by: 36

and 

V = 

~ 
2TTprh( r)dr = -x/( 1 + p + ~tL) (A. 19)

V 1 = 
~~ 

2rrprh 1( r)dr - e,x/eq , (A . 20)
R ,

• where ~c, p and q are defined in (5.16) and (5. 78 ).

The exp licit knowledge of C ,(r ), given (A ,18) —(A 20) , can be used to
obtain h ,( r) by Fourier transforming the top line of Eq. (A;7). One ob—

• tains

‘~ ,(k) =~~ ,( k)/ [ l—p ~(k) ] , (A . 2i)

where ~ 1(k) stands for the integra l of h ,(r) exp(ik.r)r2 sin8ded~dr, inte-

grated over 8, cp and r , and similarly for C(k) and C,( k) . Also one can

write another important quantity, by not i ng that directl y from (A.?) it

follows that h 1(r)—C ,(r) Is continuous across r = R 1, yi elding h ,(R,+) —

C ,(R,~) - C ,(R, ), because h ,(R,) = 0. (R ,~ = ~C.im R 1+e as C -. 0 for

c > 0.) One thus obtains

h ,(R,~ ) = -2~ee 1/DR ,q . (A.22)

The component h ,2 can be written now in terms of known quantities :

= H ,2 ° + 11 ,2 (A 23)
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and similar l y h ,1 and h ,2 can be expressed In terms of H 12 ° and H ,2. Here,

H ,2 ° is defined by (A .24 ) and H ,2 by (A . 26).~~

H ,2 ° =cp O +p~ i*~ i

H ,2 ° = — 1 , r < R (A .24)

cpO = 0 , r - .R .

So defined, H ,2 ° sat isfies the PY equation for the uncharged hard sphere

mixtures problem, but for the centra l Ion—centra l ion correlation, and Its

solution is completely known.37 In part icular ,

g,20(R) = 1 + H ,20(R) = (l— ~)’ + ~.(R/L)~(l_ ~y2 , (A. 25)

a result quoted in (5.15).

H 12 is def ine d via

H ,2 = P + ( e 2/e ,)ph ,*C,
• (A.26)
a 

H ,2 = 0 , r < R ; cp = - ~e,e2/Dr for r ‘> R

- 

- 
The main problem is to obtain from Eq. (A .26), using (A.22)—(A.24),

the value of H ,2 (r) as r approaches R from above. This can be done in a

cumbersome direct way, Or Indirect ly by fIrst showing that in the interva l

(o < r ~ R) h ,*C , is a linear function of r, Since cP(r) equals -(e2/e,)hi*C,

for r < R, one then finds a value for cp(r) :3

cp( r)  = (~ ee2/D)(2v 1 + (req ,2/e,,c2) , r < R , (A .27)

and
+

= 2TYpR ,h ,(R, ) . (A.28)
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From this one obtains

H ,2(R
~
) = cp(R~) — ~(R) =-(~e,e2/DR)( l+p)

2/qt (A. 29)

From the first equation of (A. 23) , expressed In tsrms of the g ’s in-

stead of the h’ s and using the first half of (A. 25) , one has

H ,2( R~) = g ,2 (R) — g 12 0(R) . (A .30)

Thus, the -~W ,2 in Eq. (5 .14) is g iven by

- ~w ,2(R) =H 12(R~) (A. 31)

at r = R. Eqs. (A .29) and (A .3l) y ield (5.17).

.
4

4.

II
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Tab le I

Ferrous—Ferric Electron Exchange Reactions.

Contributions to ~S
1’ and Related Data.*

Contribut ion AS1
~(0.55 H HC~C04) (0 H HCt.04)

(cal /mole/deg) (cal/mole/deg)

Transl ation -10.1 same

Nonadiabatic -9.2 same

Solvent reorganization 0.6 same

Entrop ic work term (-~w
’/ar) -5.2 —14.9

Atmosphere reorganIzation -0.1 0

Total -24.0 -33.6

Experimental -25.0 -—
•
1 Entrop ic work term, Debye-HUcke l ,

(.~Wr,~T) -5.0 —14.9

r 
Atmosphere reorganization (Dii) 0 0

(0.55 H HC~04) (0 H HCC.04)
- 

- 
( kcal/mole) ( kcal/mo le)

Work term wr 1.2 3.2
• ~

Work term ~r, Debye—HUckel 1 .2 3.2

Atmosphere reorganizatIon 0.02 0

I ,

*Diameters d 1 = d2 = R = 7 1~,
26a d3 = d4 = L = 4 R,26b

-~ (n D5/~ 
(n I = 1 ,26 and I) = 87.9 at OOC.26C

_ _ _ _  
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